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LETTER TO THE EDITOR

Heisenberg XXZ model and quantum Galilei group
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Italy and INFN-Firenze, ltaly
i Dipartimento di Matematica, Universitd di Bologna, ltaly and INFN-Firenze, Laly

Received 21 April 1992

Abstract. The 1D Heisenberg spin model with anisotropy of the XXZ wype is analysed
in terms of the symmetry given by the quantum Galilei group T 4(1). For a chain with
an infinite number of sites we show that the magnon excitations and the s = 1/2,
n-magnon bound states are determined by the algebra. In this case the T'y(1) symmetry
provides a description naturally compatible with the Bethe ansatz. The recurrcnce
relations determined by I'g(1} permit us to express the energy of the n-magnon bound
states in a closed form in terms of Tthebischeff polynomials.

Very recently some promising results have been obtained by the application of the
symmetry of inhomogeneous guantum groups [1] to physical systems with a funda-
mental scale. In [2] the rotational spectra of heavy nuclei have been reproduced,
while in [3] and [4] applications to solid state problems have been studied. In the
former case the deformation parameter of the quantum group is related to the time
scale of strong interactions, while in the latter a fundamental length arises naturally
from the lattice spacing. In [4] we have shown that the symmetry described by the g-
deformation of the Galilei group in one dimension, I, (1), yields an algebraic scheme
consistent with the Bethe ansatz {5, 6] for solving the dynamics of quantum integrable
models. The method has been illustrated using the concrete example of the infinite
length isotropic (or XXX) Heisenberg ferromagnet. In this letter we shall use I' (1)
for studying a magnetic chain with anisotropy of XXZ type, whose properties have
been throughly investigated [7,8). We shall also show that the conditions that are
to be imposed on the mass of the composite systems for obtaining bound states are
connected with the critical behaviour of the Casimir operator of [, (1).

The Hamiltonian of the model with periodic conditions Sy, = 5§, (§ =
S*,5¥,5%), is given by [7]

N
H=2JY ((1-a)(S7S5, + SYSh,) + 5:Si,)- (1)
i=1
Let | 0} be the state with all the spin directed downwards. This is an eigenstate of
H with an energy given by ¢, = 2JNs® In terms of the states with one spin deviate,
¥ =Y f; 5F|0), the eigenvalue equation for H translates into the algebraic system
i

2J5((1_03)(fi_1+f.'+1)"2fi)=(5_fo)fs' (2)
§ E-mail: GIACHETTI@FLINFN.IT
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which leads to the dispersion relation
e— € =—4Js(1 - (1-a)cosk). 3)

We have shown in [4] that the isotropic analogue of system (2) can be described
by means of a quantum group symmetry. Indeed, the solutions of (2) are obtained
by evaluating the solutions of the differential equation

—4Js(1 = (1 — a) cos(—iad,)) f(z) = (€ - ¢) f(<) C))

at integer multiples of the lattice spacing a. This form of the Schrédinger equation
on the lattice has been proposed, eg., in [9]. For e — 0, we recover from (4)
the stationary Schrodinger equation with an effective mass (—4Js (1 - ) a?)~! and
with the symmetry of the 1D Galilei group. We were therefore led in {4] to intro-
duce the deformation I' (1} of the Galilei algebra, generated by the four elements
B, M, P, T with commutation relations

[B,P]=iM [B,T] = (i/a)sin{aP) [P, T}=0.

the generator M being central.
The coproducts and the antipodes read

AB=e¢"F @B+ B@e’ AM=e"P @M+ Mge?
AP=1®P+P®1 AT=18T+T®l
VWB)=—-B-aM  A(M)=-M ~(P)=-F ~(T)=-T

while the Casimir of I' (1) is
C=MT-(1/a®) (1 - cos(aP)). (5)

This quantum algebra admits the following realization in terms of differential
operators

B =mzx M=m P=-i8

T

T = (ma?)~}(1 - cos(-iad,)) + ¢/m

where c is the constant value of the Casimir: for (ma?)™' = —4Js(1 — «) and
c¢/m = —4Jsa, the expression of T coincides with the operator on the left hand
side of (4).

Like the isotropic model [4], the algebra is invariant under P — P + (27 /a) n,
the position operator is defined as X = (1/M} B and the properties of the one-
magnon states are obtained from the ' (1) symmetry.

The properties of the two-magnon states ¥ = Y. f;; S&SF|0), with f;. =
f;i» are then described by the following system in the coeflicients f;;

(e~ eo+8Js)fi; ~2s(1 - ) Z(Jnj Sin * Jin faj)

= —J'-j((l—a)(f.'g'i'fjj)"fn‘j_fjs')' (6)
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The bonds J;; are equal to J when the label (i7) represents nearest neighbour pairs
and vanish otherwise. For s = 1/2 the amplitudes f;; cancel in pairs and I',(1),
which is a symmetry of the free system, permits a complete treatment of two-magnon
excitations. Indeed, owing to the Bethe ansatz, which imposes the separate vanishing
of the two sides of equation (6), the interaction is reduced to ‘boundary conditions’
ensuring that the homogeneous free equation is satisfied at every pair of sites.

In our previous papers [2-4] we have already proved that the coproduct is the
correct operation which allows an algebraic treatment of the many excitation systems.
From AT we therefore find the following two-magnon energy T,

T,=T1+T,
= (M,a*)" (1 = cos(aP,)) + (Mua) "' (1 —cos(aP)) + U, + U,
™)

with U; = C;/M;, i = 1,2. For a fixed value of the spin s, the eigenvalue of
M, = M, =M is equal 10 (—4J5(1 — )a?)"! and U, = U, = —4Jsa. Using
the differential realization P, = —i8,, and P, = —i3d,,, the action of T}, on the

two-magnon amplitude f(z,,z,) reads

Ty, flo),1,) = ~8Js fz,,z,) + 2Js(1 — o) (f(z), 2, + a)
+ fle, @y —a) + [+ 0,0,) + f(2; - a,3,)) - ®

The cigenvalue equation for T, is equivalent to the vanishing of the left hand side
of equation (6). Plane waves solve this eigenvalue equation and the energy of the
continuum is

e— € =—4Js(2 - (1 — &) cos(ap,) - (1 - @) cos{ap,)).

The two-magnon state eigenfunctions are then obtained by imposing both the peri-
odicity and the Bethe boundary conditions. We also observe that the coproduct of
P gives P, = P, + P, for the total momentum which, in the XXZ model, is easily
seen to be a conserved quantity.

Let us now show how the bound states for the infinite length chain and s = 1/2
can be obtained from the T'; (1) symmetry. We first observe that the central generator
M for the composite system reads

M, = Mye*P:  Mye b1,
We then consider the energy for the two-magnon system by rewriting (7) in the form

Ty, = (a® M) (1 = cos{aPyy)) + Uy )
where

(M, — M, - M,)?
202 M._M M.

=T TTIE L T

U, = U+ U, -

(10)

From equations (5), (9) and (10) the coproduct of the Casimir gives

Cipp= M12U12-
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The operators C,, and M,, label the irreducible representations of the composite
system and therefore must assume the same value over each state of a given irre-
ducible representation. We shall now show that the critical behaviour of C|,, as a
function of the global mass M,,, defines the Bethe conditions for the bound states
and thus their energy. Indeed 8C,,/3M , = 0 gives

My, = M+ My+ o* M My(U, + U,). ayn

In the continuum Galilei Jimit we find that M, is identicaily equal to M, + M,,
while, for « = 0 (i.e. for U, = U, = 0}, we recover the analogous condition for
the isotropic XXX model [4]. For two s = 1/2 magnons, in the above notation,
cquation (11) reads

My=2M](1-a). (12)

Defining 2iv = P, — P, the last condition yields just the Bethe ansatz for bound
states in the limit of an infinite number of sites [7]

e ¥ =(1- «)cos(aP/f2).

By substituting equation (12) into (9) and (10) we get the known form for the energy
of bound states

Tio = —2J(1 = (1 — a)® cos*(aP[2)).

We now give the generalization to the n-magnon case. The total energy obtained
from the quantum group can be written as

Tip.n = Z T, = (G'?Ml?...n)—](l —cos(aPy )+ Unp.n  (13)
k=1

where Py, . =3 r., P and

Z 1 (Ml'z &= My, (k- 1)'“1,"/11;-)2

Uigon = E az

= My My e_yMi

(14
In the above equations Af,, . are defined by iterating the coproduct and using the
coassociativity
M, .= Mz...(h-1)eia(P"+"'+P*) + M, et o+h-y [<hgk. (19)
Moreover the coproducts of the Casimir C,, , are found to be

Cra e = Myy 4k Vigk-

The bound states are obtained from (13) and (14) by imposing vanishing of the
sequence of the derivatives of C,, , with respect to M,, , for k=2,...,n. The
conditions determining M, , read

My =My oyt M+a® My gy M (U oyt Uy) k=2,..0,n.
(16)
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We have performed a computer-assisted analysis [10] of the recurrence relations
(14) and (16) and we have found that they can be solved, yielding

My p=—(2J(1~0)e?) U _,(1/(1-a))  k=2,...,n a7
-2J(1 - o
Ts.n = a7y (Ta(1/(1 = @) = cos(aPy, ) 18)

where I{;, and 7, are the Tthebischeff polynomials [11]. The equations (17), where
M, ., have the form given in (15), are equivalent to the Bethe conditions

M(k-])k=2M/(1'-a)=-(J(1-a)2112)-1 k=2....n.

Equation (18) gives the energy of the n-magnon bound states.

Some final remarks are in order. In the first place we observe that the treatment
given in [4] of the XXX model has been here extended in a straightforward way also
to the anisotropic XXZ model. We thus provide further evidence for the significance
of the application of the inhomogeneous quantum groups, like ' (1) and E_(1,1),
as kinematical symmetries of elementary physical systems described by a discretized
Schrodinger or Klein-Gordon equation: it is the appropriaie guantum group that
indicates the Bethe ansatz and then the integrability of the system, so that explicit
computations are made possible.

The authors thank A G Izergin and V Tognetti for useful discussions.
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